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Motivation
I Predict poor channel state and schedule resources to fill user’s play-out

buffer in advance.
I At poor channel state, the user satisfies QoE requirements from buffer and

radio resources can be allocated to other users with better channel.
I Exploit multi-user diversity at larger time scale and turn memory into

spectral efficiency and QoE with fluent streaming.

User’s buffer model integrated into a network controller

I Runs a linear buffer model to be aware of the user’s buffer state.
zk,t = max(ωk,tSk,t + zk,t−1 − V d

k,t, 0) ∀k ∈ K,∀t ∈ T . (1)

I Solves a Linear Programming (LP) problem in real time, in order to
allocate the optimal resources to K users by exploiting a prediction horizon
of T time slots.

System architecture

Anticipatory Scheduler

min
ω,z,`

∑
k∈K

∑
t∈T

(ωk,t + γ`k,t)

s.t.
zk,0 = ζk ∀k ∈ K, Non-empty initial buffer.

zk,t = max(ωk,tSk,t + zk,t−1 − V d
k,t, 0) ∀k ∈ K,∀t ∈ T , Buffer evolution.

`k,t = 1
V d
k,t

max(−ωk,tSk,t − zk,t−1 + V d
k,t, 0) ∀k ∈ K,∀t ∈ T , Stalling time.

∑
k∈K ωk,t a

m
k,t ≤ Nm ∀t ∈ T ,∀m ∈M, Limited BS resources.
zk,t ≤ Zk ∀k ∈ K,∀t ∈ T , Maximum buffer size.

ωk,t, zk,t ∈ R+ ∀k ∈ K,∀t ∈ T .

Linearization of constraints for buffer evolution
and stalling time leads to an LP formulation.

Simulation Results

I Perfect channel prediction.
I Multi-user, highway model.
I Cell spectral efficiency vs. prediction horizon.
I Probability of zero stalls vs. number of users.
I Number of supported users with at least 90%

probability of zero stalls.
I Cell spectral efficiency vs. stalling duration per

user for different values of γ.
I Cell spectral efficiency for 10% average stalling

duration.

Prediction horizon T (slots)
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Conclusions
I Numerical results show an outstanding gain in spectral efficiency, number of supported users and QoE

(up to 3 times increase of spectral efficiency and 5 times increase of supported users under the same QoE constraint).
I LP formulation allows real-time implementation: the required computational time is affordable even for large instances of the problem.


